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Abstract

This paper deals with the experimental identification and the validation of a non-parametric probabilistic approach

allowing model uncertainties and data uncertainties to be taken into account in the numerical model developed to predict

low- and medium-frequency dynamics of structures. The analysis is performed for a composite sandwich panel

representing a complex dynamical system which is sufficiently simple to be completely described and which exhibits, not

only data uncertainties, but above all model uncertainties. The dynamical identification is experimentally performed for

eight panels. The experimental frequency response functions are used to identify the non-parametric probabilistic

approach of model uncertainties. The prediction of the low- and medium-frequency dynamical responses obtained with the

stochastic system is compared with the experimental measurements.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The last two decades have received a particular attention in developments of parametric probabilistic
approach for modelling data uncertainties (material properties, geometry, boundary conditions) in structural
dynamics, for many simple and complex dynamical systems, including the case of composite structures (see for
instance, Refs. [1–9] for analysis, optimal design, stability analysis, free vibration and reliability analysis of
composite structures).

This paper has two main objectives. The first one is to present the validation of an experimental
identification method of a general non-parametric probabilistic approach recently introduced (see Refs.
[10–12]), allowing model and data uncertainties to be taken into account in structural dynamics. The structure
which has been chosen for performing this probabilistic analysis is a composite sandwich panel because it
constitutes a complex dynamical system which is sufficiently simple to be completely described and which
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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exhibits not only data uncertainties but above all model uncertainties. The second objective is to analyze the
role played by model uncertainties in the dynamical responses of such mechanical system. It is known that the
dynamical responses of light composite sandwich panels in the medium-frequency (MF) range are sensitive to
the process used for their manufacturing. In addition, such sandwich panels constitute complex dynamical
systems (dynamical behavior of the materials constituting the different layers; interface conditions between
two adjacent layers; boundary conditions, etc.) and consequently, model uncertainties are induced by the
mathematical–mechanical modelling process in which simplifications are introduced. Finally, the parameters
of the mathematical–mechanical modelling are not known with a great precision which means that data
parameters are also uncertain. It should be noted that this paper addresses (1) neither uncertain loads, (2)
neither data uncertainties modelled by perturbation techniques or by the usual parametric probabilistic
approach (3) nor active control and related topics such as synthesis of active controllers. This paper mainly
addresses a new experimental validation of a general probabilistic approach which allows model uncertainties
and data uncertainties to be taken into account in the numerical predictive models for the low-frequency (LF)
and MF dynamics. Eight sandwich panels have been manufactured using an identical process and their
frequency-response functions (FRFs) have been experimentally identified.

The designed composite sandwich panel is constituted of two thin carbon–resin skins and one high stiffness
closed-cell foam core. Each skin is constituted of two unidirectional plies ½60=� 60�. As written above, it is
known that such sandwich panels, manufactured with an identical process, generally present a significant
dispersion for their FRFs in the LF range and above all in the MF range. Concerning the sandwich panel, the
objectives are (1) to perform an experimental analysis of the FRFs dispersion due to the process used for
manufacturing the sandwich panels, (2) to develop a predictive mean mechanical model based on the use of the
laminated composite thin plate theory in dynamics and to compare the numerical simulations with the
experiments, and (3) to use a non-parametric probabilistic approach allowing data and model uncertainties to
be modelled in order to improve the predictability of the mean model in the LF and MF dynamics.

The non-parametric probabilistic approach used in this paper is based on the concepts and the methodology
introduced in Refs. [10–12]. In such a probabilistic model, the probability distribution of each full random
generalized matrix of the dynamical system (generalized mass, damping and stiffness matrices) depends on a
dispersion parameter (the coefficient of variation of the full random matrix constructed with the Frobenius
norm) allowing the level of the random fluctuations of each random matrix to be controlled. An experimental
estimation of each dispersion parameter for the random generalized mass, damping and stiffness matrices is
proposed. The confidence regions of the random FRFs are predicted by using the random dynamical system
constructed with the non-parametric probabilistic approach of model and data uncertainties and are
compared with the experimental FRFs measured for the eight sandwich panels.
Notation

In this paper, the following notations are used:
(1) A lower case letter is a real or complex deterministic variable (e.g. f ).
(2) A boldface lower case letter is a real or complex deterministic vector (e.g. f ¼ ð f 1; . . . ; f nÞ).
(3) An upper case letter is a real or complex random variable (e.g. F).
(4) A boldface upper case letter is a real or complex random vector (e.g. F ¼ ðF 1; . . . ;FnÞ).
(5) An upper case letter between brackets is a real or complex deterministic matrix (e.g. ½A�).
(6) A boldface upper case letter between brackets is a real or complex random matrix (e.g. ½A�).
(7) Any deterministic quantities above (e.g. f ; f; ½A�) with an underline (e.g. f ; f; ½A�) means that these

deterministic quantities are related to the mean model (or to the nominal model).
In addition, the following algebraic notations are used:
Euclidean space: The Euclidean space Rm is equipped with the usual inner product such that, for all

u ¼ ðu1; . . . ; umÞ and v ¼ ðv1; . . . ; vmÞ in Rm, hu; vi ¼ u1 v1 þ � � � þ umvm and the associated norm kuk ¼ hu; ui1=2.
The bilinear form ðu; vÞ 7!hu; vi is extended to complex vectors u and v belonging to the Hermitian space Cm.

Hermitian space: For all u ¼ ðu1; . . . ; umÞ in the Hermitian space Cm, its hermitian norm is such that
kuk ¼ fju1j

2 þ � � � þ jumj
2g1=2.
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Matrix sets: Let Mn;mðRÞ be the set of all the ðn�mÞ real matrices, MnðRÞ ¼Mn;nðRÞ be the set of all the
square ðn� nÞ real matrices, MS

n ðRÞ be the set of all the ðn� nÞ real symmetric matrices and Mþn ðRÞ be the set
of all the ðn� nÞ real symmetric positive-definite matrices. We then have Mþn ðRÞ �MS

n ðRÞ �MnðRÞ.
Norms and usual operators: We denote:
(1)
 the determinant of matrix ½A� 2MnðRÞ as det½A� and its trace as tr½A� ¼
Pn

j¼1½A�jj,

(2)
 the transpose of ½A� 2Mn;mðRÞ as ½A �

T 2Mm;nðRÞ,

(3)
 the Frobenius norm (or Hilbert–Schmidt norm) kAkF of ½A� as kAkF ¼ ftrf½A�

T½A�gg1=2.

(4)
 the mathematical expectation of any random quantity such as ½A� is denoted by Ef½A�g.
2. Description of the designed sandwich panel

The designed sandwich panel is constituted of five layers made of four thin carbon–resin unidirectional plies
and one high stiffness closed-cell foam core. This panel is defined with respect to a Cartesian coordinate
system Oxyz and is 0.40m length (Ox-axis), 0.30m width (Oy-axis) and 0.01068m total thickness (Oz-axis).
The middle plane of the sandwich panel is Oxy and the origin O is located in the corner. Each carbon layer is
made of a thin carbon–resin ply with a thickness of 0.00017m, a mass density r ¼ 1600 kg=m3. Let OXYZ be
the local Cartesian coordinate system attached to a carbon–resin ply for which OXY coincides with the plan of
the ply and for which its fibers are oriented in OX direction. Then, the elasticity constants expressed in the
local coordinate system OXYZ are: EX ¼ 101GPa; EY ¼ 6:2GPa; nXY ¼ 0:32; GXY ¼ GXZ ¼ GYZ ¼

2:4GPa. The first two layers are two carbon–resin unidirectional plies in a ½�60=60� layup. The third layer
is a closed-cell foam core with a thickness of 0.01m, a mass density of 80 kg/m3 and elasticity constants:
Ex ¼ Ey ¼ 60MPa; nxy ¼ 0; Gxy ¼ Gxz ¼ Gyz ¼ 30MPa. The fourth and fifth layers are two carbon–resin
unidirectional plies in a ½60=� 60� layup.

3. Manufacturing the sandwich panels

Eight sandwich panels have been manufactured from the designed sandwich panel using an identical process
and the same materials. All the sandwich panels have been baked in the same batch for suppressing the
influences of the different baking conditions concerning time and temperature. The different steps for the
manufacturing of the sandwich panels are the following.

Step 1: Cut out the carbon–resin tissue and cut out the foam plate with the dimension of the designed panel.
Step 2: For each plate, paste the carbon–resin tissues with the foam plate.
Step 3: Bake the eight sandwich panels pasted in the previous step in the vacuum oven for solidify the

oxygen resin existing in the sandwich. Fig. 1 shows step 2 of the manufacturing process for a sandwich panel.

4. Dynamical identification of the eight sandwich panels

4.1. Description of dynamical testing

The panel is vertical and suspended by two thin soft rubber bands attached to the two upper corners of the
panel. The eigenfrequency of the vertical body motion is about 2Hz which has to be compared to the lowest
elastic eigenfrequency which is 191Hz. Consequently, the measurements of the FRFs in the frequency band of
analysis are then performed for a configuration corresponding to free–free conditions. The frequency band of
analysis considered is the band B ¼ ½10; 4500�Hz corresponding to the model validity of the mean finite
element model. The input z-force is a point load applied to the point N0 of coordinates ð0:187; 0:103; 0Þm and
is delivered by an electrodynamic shaker which is horizontally fixed. The input force is measured with a force
transducer which is located between the panel and the shaker. The experimental configuration used guarantees
a correct excitation in bending mode with a driven force which can be modelled by a point force. Point N0 has
been chosen such that all the symmetric and anti-symmetric elastic modes of the panel is excited in the
frequency band of analysis.
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Fig. 1. Step 2 of the manufacturing process of a sandwich panel.
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The output z-accelerations are measured at 25 points by accelerometers. For the sake of briefness, the
presentation is limited to the three following points: N1 with coordinates ð0:337; 0:103; 0Þm, N2 with
coordinates ð0:112; 0:159; 0Þm and N3 with coordinates ð0:337; 0:216; 0Þm. The cross-FRFs are identified on
frequency band B by using the usual spectral analysis method and signal processing [13,14].

4.2. Experimental cross-frequency response functions

Figs. 2–4 display the graphs of the modulus of the experimental cross-FRFs in log scale for an input at point
N0 (driven point) and a transversal acceleration output at points N1, N2 and N3, respectively. There are eight
graphs on each figure corresponding to the eight sandwich panels. The analysis of the 25 experimental cross-
FRFs on frequency band B ¼ ½10; 4500�Hz (in which there are 60 elastic modes) shows a small dispersion in
the frequency band ½10; 1550�Hz (in which there are 11 elastic modes) and a significant dispersion, increasing
with the frequencies, in the frequency band ½1550; 4500�Hz (in which there are about 59 elastic modes). This
can clearly be seen in Figs. 2–4 relative to points N1, N2 and N3, respectively.

4.3. Experimental modal analysis

For each sandwich panel, an experimental modal analysis [15] has been performed using a commercialized
software [16] in the frequency band ½10; 1550�Hz and the identified experimental cross-FRFs (see Section 4.2).
For each sandwich panel r ¼ 1; . . . ; 8, 11 elastic modes have been identified in this frequency band. For
sandwich panel r, the following usual modal parameters of each experimental elastic mode a has been
identified: (1) the eigenfrequency oexp

a ðyrÞ, (2) the damping rate xexpa ðyrÞ, (3) the elastic mode shape cexp
a ðyrÞ and

the corresponding generalized mass mexpa ðyrÞ.
The experimental modal model identification used to estimate the eigenfrequencies, the damping rates, the

elastic mode shapes and the generalized masses (from data constituted of the experimental cross-FRFs) are the
following [16]: The identification procedure is to seek an approximation of the measured cross-FRFs in the
pole/residue usual form. An iterative refinement of the poles of the current model is performed. The three
main steps of the procedure are: (1) finding initial pole estimates, adding missed poles, removing
computational poles, (2) estimating residues and residual terms for a given set of poles, (3) optimizing
poles and residues of the current model using a narrow frequency band update. In particular, from the poles, it
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Fig. 3. Graphs of the eight experimental cross-FRF between point N0 and point N2 corresponding to the eight sandwich panels.

Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus of the acceleration in m=s2.
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Fig. 2. Graphs of the eight experimental cross-FRF between point N0 and point N1 corresponding to the eight sandwich panels.

Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus of the acceleration in m=s2.
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is deduced the experimental eigenfrequencies and the experimental damping rates. This procedure allows the
first 11 experimental eigenmodes to be identified without significant errors while the errors increase with
the upper experimental eigenmodes (12, 13, etc.). Consequently, only the first 11 identified eigenmodes
have been kept.

Concerning the updating of the conservative part of the mean model with the first experimental
eigenfrequencies (see Section 5.3), an average value of each experimental eigenfrequency is constructed over
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Fig. 4. Graphs of the eight experimental cross-FRF between point N0 and point N3 corresponding to the eight sandwich panels.

Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus of the acceleration in m=s2.
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the set of the eight experimental panels. For each experimental eigenfrequency a, the usual estimation oexp
a

defined by

oexp
a ¼ ð1=8Þ

X8
r¼1

oexp
a ðyrÞ

is then introduced and represents the average experimental eigenfrequency. In addition, the updating of the
conservative part of the mean model will be performed using only the first four ‘‘well isolated’’ eigenmodes.
Introducing f exp

a
¼ oexp

a =ð2pÞ, the results for the first four eigenfrequencies are

f exp

1
¼ 191:0Hz; f exp

2
¼ 329:5Hz; f exp

3
¼ 532:0Hz; f exp

4
¼ 635:1Hz.

Concerning the dissipative part of the mean model no updating is performed to ‘‘obtain a good fit’’ (which
would be really difficult to construct because the prediction performed is a confidence region of the stochastic
FRFs corresponding to a given probability level and in addition, would be without any interest since the
objective of the paper is to take into account model and data uncertainties and not only data uncertainties). A
global average experimental damping rate is then constructed as explained below and then the average value is
directly used in the mean model (see Section 5.2). For a ¼ 1; . . . ; 11, let

xexpa ¼ ð1=8Þ
X8
r¼1

xexpa ðyrÞ

be the average experimental damping rate a over the set of the eight experimental panels. Let

xexp ¼ ð1=11Þ
X11
a¼1

xexpa

be the global average experimental damping rate for the first 11 experimental eigenfrequencies. This procedure
yields the value

xexp ¼ 0:01,

which will be directly used in the mean model.
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5. Mean mechanical model of the dynamical system and experimental comparisons

The mean model refers to the model deduced from the mechanical–mathematical model of the designed
sandwich panel for which data (geometry, elasticity constants, mass densities, etc.) correspond to the designed
sandwich panel data values and are usually called the mean data or the nominal data.

5.1. Mean finite element model

The designed panel is considered as a laminated composite thin plate for which each layer is made of an
orthotropic elastic material [17–19]. The elasticity constants of each layer are given in Section 2. Since we are
interested in the z-displacement of the middle plane of the sandwich panel in the bending mode and since the
panel is a free structure, there are three rigid body modes. We are interested in the construction of the
responses in the frequency domain over the frequency band of analysis B. The designed panel is modelled by
using a regular finite element meshes constituted of 64� 64 four-nodes finite elements for laminated plate
bending. The damping of the structure is introduced by an arbitrary usual model controlled by the modal
damping rates (see Section 5.2).

In frequency band B, the mean finite element model of linear vibrations of the free designed panel around a
position of static equilibrium taken as reference configuration without prestresses is written as

ð�o2½M� þ io½D� þ ½K�Þ yðoÞ ¼ fðoÞ; o 2 B, (1)

in which yðoÞ ¼ ðy
1
ðoÞ; . . . ; y

m
ðoÞÞ is the Cm-vector of the m-dofs (displacements and rotations) and fðoÞ ¼

ðf
1
ðoÞ; . . . ; f

m
ðoÞÞ is the Cm-vector of the m inputs (forces and moments). The mean mass matrix ½M� is a

positive-definite symmetric ðm�mÞ real matrix. The mean damping and stiffness matrices ½D� and ½K� are
positive-semidefinite symmetric ðm�mÞ real matrices (free structure). Matrices ½D� and ½K� have the same null
space having a dimension mrig ¼ 3 and spanned by the rigid body modes fu

�2
;u
�1
;u

0
g. It is assumed that the

given deterministic load vector fðoÞ is in equilibrium, i.e. is such that hfðoÞ;u
1�b
i ¼ 0 for all b in f1; 2; 3g. For

all o in B, Eq. (1) has a unique solution yðoÞ ¼ ½TðoÞ� fðoÞ in which ½TðoÞ� is the matrix-valued FRF defined

by ½TðoÞ� ¼ ½AðoÞ��1 where ½AðoÞ� is the dynamic stiffness matrix such that

½AðoÞ� ¼ �o2½M� þ io½D� þ ½K�. (2)

5.2. Mean reduced matrix model

The mean reduced matrix model adapted to frequency band B is constructed by using the usual modal
analysis with the elastic modes of the associated conservative system. The generalized eigenvalue problem
associated with the mean mass and stiffness matrices of the mean finite element model is written as
½K� u ¼ l½M� u. Since ½K� is a positive-semidefinite matrix, we have l�2 ¼ l�1 ¼ l0 ¼ 0ol1pl2p � � �plm

and the associated elastic modes fu
1
;u

2
; . . .g corresponding to the strictly positive eigenvalues l1; l2; . . ., are

such that h½M�u
b
;u

b0
i ¼ m

b
dbb0 and h½K�ub

;u
b0
i ¼ m

b
o2

bdbb0 in which ob ¼
ffiffiffiffiffi
lb

p
is the eigenfrequency of elastic

mode u
b
whose normalization is defined by the generalized mass m

b
. The mean reduced matrix model of the

dynamic system whose mean finite element model is defined by Eq. (1) is obtained by constructing the projection
of the mean finite element model on the subspace Vn of Rm spanned by fu

1
; . . . ;u

n
g with n5m. Let ½Fn� be the

ðm� nÞ real matrix whose columns are vectors fu
1
; . . . ;u

n
g. The generalized mass, damping and stiffness

matrices ½Mn�, ½Dn� and ½Kn� are positive-definite symmetric ðn� nÞ real matrices such that ½Mn�bb0 ¼ m
b
dbb0 ,

½Dn�bb0 ¼ h½D�ub0
;u

b
i and ½Kn�bb0 ¼ m

b
o2

bdbb0 . In general, ½Dn� is a full matrix. Nevertheless, as explained in

Section 5.1, the damping model is introduced in writing that ½Dn�bb0 ¼ 2xbmbobdbb0 in which x
1
; . . . ; x

n
are the

mean modal damping rates. The mean damping model is then chosen (see Section 4.3) such that

x
1
¼ � � � ¼ x

n
¼ xexp ¼ 0:01.
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For frequency band B, the mean reduced matrix model of the dynamic system is written as the approximation
ynðoÞ of yðoÞ such that

ynðoÞ ¼ ½Fn�q
nðoÞ; o 2 B, (3)

in which the Cn-vector qnðoÞ of the generalized coordinates is the unique solution of the mean reduced matrix

equation,

ð�o2½Mn� þ io½Dn� þ ½Kn�Þq
nðoÞ ¼FnðoÞ; o 2 B (4)

with FnðoÞ ¼ ½Fn�
T fðoÞ 2 Cn and where the mean generalized mass, damping and stiffness matrices are the

positive-definite symmetric ðn� nÞ real diagonal matrices defined above.
5.3. Updating the conservative part of the mean model with the first experimental eigenfrequencies

Firstly, the mean value of the mass density r of each carbon–resin ply has been identified by using (1) a
measurement of the dimensions and of the total weight of the panel and (2) the mass density of the foam given
by the manufacturer. This identification yields rupd ¼ 1904 kg=m3.

Secondly, the Young moduli EX and EY of each carbon–resin ply has been updated with respect to the first
eigenfrequencies. The main hypothesis used is to obtain an updated mean model which has a correct global
stiffness. Consequently, since only the two parameters EX and EY are used for this updating, the number of
elastic mode has been limited to the first four eigenfrequencies. The calculation of the eigenfrequencies of the
designed panel with data defined in Section 2 has been performed with the mean finite element model (see
Section 5.1) whose finite element mesh is made of 128� 64 four-nodes finite elements. For this designed panel,
the first four computed eigenfrequencies are

f
1
¼ 176:4Hz; f

2
¼ 344:8Hz; f

3
¼ 499:7Hz; f

4
¼ 651:2Hz.

The updating of the conservative part of the mean model is then performed in minimizing the following cost
function:

JðEX ;EY Þ ¼
X4
b¼1

jf
b
� f exp

b
j

with respect to EX and EY , where

f exp

1
¼ 191:0Hz; f exp

2
¼ 329:5Hz; f exp

3
¼ 532:0 Hz; f exp

4
¼ 635:1Hz,

are the average experimental eigenfrequencies defined in Section 4.3, and where all the other mechanical
parameters take the values defined in Section 2 except r ¼ rupd. The updated values for EX and EY are

E
upd
X ¼ 103GPa; E

upd
Y ¼ 6:0GPa

and yields for the first four updated eigenfrequencies,

f upd

1
¼ 191:7Hz; f upd

2
¼ 332:8Hz; f upd

3
¼ 529:5Hz; f upd

4
¼ 630:8Hz.

Below, the updated mechanical parameters are used instead of the values defined for the designed sandwich
panel. The designed sandwich panel with the updated mechanical constants will be named the updated
designed sandwich panel associated with the updated mean finite element model and the updated mean
reduced matrix model.
5.4. Convergence with respect to the mesh size for the updated designed panel

A convergence analysis of the cross-FRFs of the updated designed sandwich panel has been performed with
respect to the size mesh of the finite element mesh. Fig. 5 displays the graphs of the cross-FRF between point
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Fig. 5. Convergence of the cross-FRF between point N0 and point N1 for three finite element meshes: 32� 32 (thin solid line), 64� 64

(thick solid line), 128� 64 (thin dashed line). Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus of the acceleration in

m=s2.
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N0 and point N1 for the three finite element meshes: 32� 32 four-nodes finite elements, 64� 64 four-nodes
finite elements and 128� 64 four-nodes finite elements. All the results obtained, and in particular Fig. 5, show
that convergence with respect to the finite element mesh size is reasonable for 64� 64 four-nodes finite
elements.
5.5. Convergence of the updated mean reduced matrix model with respect to the number of elastic modes

The convergence with respect to the dimension of the updated mean reduced matrix model is analyzed in
studying the graph of the L2-norm in space (over all the middle plane of the sandwich panel) and in frequency
(over all the frequency band of analysis B) of the z-acceleration response for a unit input applied to point N0.
Fig. 6 displays the graph of this norm versus the dimension of the updated mean reduced matrix model, that is
to say, versus the number of elastic modes. The convergence is reached for n ¼ 120.
5.6. FRF calculation with the updated mean reduced matrix model and experimental comparisons

The cross-FRFs are calculated by using Eqs. (3) and (4) (updated mean reduced matrix model) with
n ¼ 200. Figs. 7–9 display the graphs of the modulus of the experimental and numerical cross-FRFs in log
scale for an input at point N0 (driven point) and a z-acceleration output at points N1, N2 and N3,
respectively. There are nine graphs on each figure: eight graphs correspond to the experimental cross-FRFs
associated with the eight sandwich panels and one graph corresponds to the numerical cross-FRFs computed
with the updated mean reduced matrix model.

The comparisons of the experimental cross-FRFs with those constructed with the updated mean finite
element model are reasonably good in the frequency band ½0; 1500�Hz and are relatively bad in
½1500; 4500�Hz. In the frequency band ½1500; 4500�Hz, the lack of predictability is increasing with the
frequency and is mainly due to data uncertainties (mechanical parameters) and to model uncertainties
(modelling the sandwich panel by using the laminated composite thin plate theory).
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Fig. 6. Convergence of the L2-norm in space and in frequency of z-acceleration response (vertical axis) versus the dimension of the

updated mean reduced matrix model (horizontal axis).

500 1000 1500 2000 2500 3000 3500 4000 4500
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 7. Graphs of the cross-FRF between point N0 and point N1. Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus

of the acceleration in m=s2. Experimental cross-FRF corresponding to the eight panels (eight thin solid lines). Numerical cross-FRF

calculated with the updated mean reduced matrix model (thick solid line).
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6. Nonparametric model of random uncertainties

The non-parametric model of random uncertainties has initially been introduced in Ref. [10]. The
construction of the non-parametric model of random uncertainties in the frequency band B consists in
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Fig. 8. Graphs of the cross-FRF between point N0 and point N2. Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus

of the acceleration in m=s2. Experimental cross-FRF corresponding to the eight panels (eight thin solid lines). Numerical cross-FRF

calculated with the updated mean reduced matrix model (thick solid line).
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Fig. 9. Graphs of the cross-FRF between point N0 and point N3. Horizontal axis: Frequency in Hertz. Vertical axis: log10 of the modulus

of the acceleration in m=s2. Experimental cross-FRF corresponding to the eight panels (eight thin solid lines). Numerical cross-FRF

calculated with the updated mean reduced matrix model (thick solid line).
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modelling the generalized mass, damping and stiffness matrices of the mean reduced matrix model defined by
Eqs. (3) and (4) by full random matrices ½Mn�; ½Dn� and ½Kn� with values in Mþn ðRÞ such that Ef½Mn�g ¼

½Mn�;Ef½Dn�g ¼ ½Dn� and Ef½Kn�g ¼ ½Kn�. Consequently, the non-parametric model of random uncertainties in
frequency band B is written as

YnðoÞ ¼ ½Fn�Q
nðoÞ, (5)
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in which, for all o fixed in B, the Cn-valued random variable QnðoÞ of the random generalized coordinates is
the unique solution of the random reduced matrix equation,

ð�o2½Mn� þ io½Dn� þ ½Kn�ÞQ
nðoÞ ¼FnðoÞ; o 2 B. (6)

From Refs. [10–12,20], these random matrices are written as

½Mn� ¼ ½LMn
�T½GMn

�½LMn
�, (7)

½Dn� ¼ ½LDn
�T½GDn

�½LDn
�, (8)

½Kn� ¼ ½LKn
�T½GKn

�½LKn
�, (9)

in which the positive-definite ðn� nÞ real diagonal matrices ½LMn
�, ½LDn

� and ½LKn
� are such that ½Mn� ¼ ½LMn

�2,
½Dn� ¼ ½LDn

�2 and ½Kn� ¼ ½LKn
�2. Assuming that no available information (objective data) exits concerning the

statistical dependence of the random generalized mass, damping and stiffness matrices, then it can be proved
[10] that the full random matrices ½GMn

�, ½GDn
� or ½GKn

� have to be considered as mutually independent. The
dispersion of random matrices ½GMn

�, ½GDn
� and ½GKn

� are controlled by the positive real parameters dM , dD

and dK which are independent of dimension n and which do not depend on frequency o. If An denotes Mn, Dn

or Kn, then the dispersion parameter dA of random matrix ½An� is defined by

dA ¼
1

n
Efk½GAn

� � ½In� k
2
F g

� �1=2

. (10)

The probability distribution P½GAn �
of the random matrix ½GAn

� is defined by a probability density function

½Gn� 7!p½GAn �
ð½Gn�Þ from Mþn ðRÞ into Rþ ¼ ½0;þ1½, with respect to the measure edGn on MS

n ðRÞ, such that,edGn ¼ 2nðn�1Þ=4P1pipjpnd½Gn�ij. We then have P½GAn �
¼ p½GAn �

ð½Gn�Þ
edGn with the normalization conditionR

Mþn ðRÞ
p½GAn �
ð½Gn�Þ

edGn ¼ 1. The probability density function p½GAn �
ð½Gn�Þ is then written [10–12,20] as

p½GAn �
ð½Gn�Þ ¼ 1Mþn ðRÞð½Gn�Þ � CGAn

� ðdet ½Gn�Þ
ðnþ1Þ

ð1�d2
A
Þ

2d2
A � exp �

ðnþ 1Þ

2d2A
tr½Gn�

( )
,

in which 1Mþn ðRÞð½Gn�Þ is equal to 1 if ½Gn� 2Mþn ðRÞ and is equal to zero if ½Gn�eMþn ðRÞ and where the positive

constant CGAn
is such that

CGAn
¼
ð2pÞ�nðn�1Þ=4

ððnþ 1Þ=2d2AÞ
nðnþ1Þð2d2AÞ

�1

fPn
j¼1Gððnþ 1Þ=2d2A þ ð1� jÞ=2Þg

,

with GðzÞ the gamma function defined for z40 by GðzÞ ¼
Rþ1
0 tz�1 e�t dt. The above equation shows that

f½GAn
�jk; 1pjpkpng are dependent random variables. In general, ðnþ 1Þ=d2A is not an integer and

consequently, the probability distribution is not a Wishart distribution.
In order to solve the stochastic equation (6) by the Monte Carlo numerical simulation, it is necessary to

construct a random matrix generator for ½GAn
� whose probability density function p½GAn �

ð½Gn�Þ is defined above.
The following algebraic representation developed in Refs. [10–12,20] allows such a random matrix generator
to be constructed. The random matrix ½GAn

�, with dispersion parameter dA and having the probability density
function p½Gn�

ð½Gn�Þ defined above, can be written as

½GAn
� ¼ ½LAn

�T½LAn
� (11)

in which ½LAn
� is an upper triangular random ðn� nÞ real matrix such that the random variables f½LAn

�jj0 ; jpj0g

are mutually independent and such that
(1)
 for joj0, real-valued random variable ½LAn
�jj0 is written as ½LAn

�jj0 ¼ snUjj0 in which sn ¼ dAðnþ 1Þ�1=2 and

where Ujj0 is a real-valued Gaussian random variable with zero mean and variance equal to 1;
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(2)
 for j ¼ j0, positive-valued random variable ½LAn
�jj is written as ½LAn

�jj ¼ sn

ffiffiffiffiffiffiffiffi
2Vj

p
in which sn is defined

above and where Vj is a positive-valued gamma random variable whose probability density function pV j
ðvÞ

with respect to dv is written as

pV j
ðvÞ ¼ 1RþðvÞ G

nþ 1

2d2A
þ

1� j

2

 !( )�1
vðnþ1Þ=2d

2
A�ð1þjÞ=2e�v.
7. Experimental estimation of the dispersion parameters for the non-parametric probabilistic model

Let dM , dD and dK be the dispersion parameters of the random generalized mass, damping and stiffness
matrices. Since the dispersion parameters have to be independent of n (see Section 6), the dispersion
parameters can be estimated by using the experimental matrices ½Mexp

n ðyrÞ�, ½D
exp
n ðyrÞ� and ½K

exp
n ðyrÞ� for r ¼

1; . . . ; 8 corresponding to the eight experimental sandwich panels, and for a dimension non. Here, a very
simple procedure is proposed for estimating dM , dD and dK (this procedure corresponds to the first step of the
procedure based on the maximum likelihood principle and developed in Ref. [20]). The first step of this
procedure consists in associating the n first elastic modes computed with the updated mean finite element
model, with the corresponding n experimental elastic modes obtained by performing the experimental modal
analysis [15,16] of each sandwich panel. Let 0ooexp

j1
ðyrÞp � � �poexp

jn
ðyrÞ be the set of the n experimental

eigenfrequencies of sandwich panel r, corresponding to the set of the n first eigenfrequencies 0oo1p � � �pon
computed with the updated mean finite element model. The same set of degrees of freedom for the mean finite
element model and for the experimental sandwich panels is considered (25 observations).

For each sandwich panel r ¼ 1; . . . ; 8, the association of the first experimental elastic modes ordered in
increasing eigenfrequencies (which means that j1 ¼ 1; . . . ; jn ¼ n), with the first elastic modes computed with
the updated mean finite element model and ordered in increasing eigenfrequencies, is performed using the
½MACðyrÞ� matrix defined by

½MACðyrÞ�ab ¼
hu

b
;wexp

a ðyrÞi
2

hu
b
;u

b
ihwexp

a ðyrÞ;w
exp
a ðyrÞi

,

in which u
b
is the elastic mode of the updated mean finite element model whose eigenfrequency is ob and

where wexp
a ðyrÞ is the experimental elastic mode of sandwich panel r whose eigenfrequency is oexp

a ðyrÞ. Let us
consider the eight first elastic modes, i.e. n ¼ 8. Let ½MAC� be the ð8� 8Þ real matrix corresponding to the
average over the 8 panels and defined by ½MAC� ¼ 1

8

P8
r¼1½MACðyrÞ�. The computation of this average MAC

matrix yields

½MAC� ¼

0:9677 0:0018 0:0594 0:0299 0:0045 0:0120 0:0018 0:0313

0:0004 0:9600 0:0098 0:0284 0:0029 0:0387 0:0625 0:0006

0:0508 0:0139 0:9606 0:0027 0:0035 0:0058 0:0490 0:0230

0:0198 0:0105 0:0019 0:9761 0:0079 0:0040 0:0270 0:0301

0:0129 0:0010 0:0012 0:0005 0:9775 0:0040 0:0270 0:0301

0:0006 0:0302 0:0341 0:0000 0:0121 0:9124 0:0055 0:0068

0:0010 0:0774 0:0135 0:0547 0:0006 0:0077 0:9177 0:0002

0:0862 0:0002 0:0070 0:0232 0:0123 0:0079 0:0199 0:8053

266666666666664

377777777777775
.

The matrix ½MAC� allows the optimal number n to be defined (number of experimental elastic modes which
can be associated with elastic modes computed with the updated mean finite element model). Fixing an error
less than 4%, this matrix shows that the diagonal terms are dominant and larger or equal to 0:96 for n ¼ 5.
The optimal value is then n ¼ 5.

One has now to estimate the dispersion parameters of the three random matrices using n ¼ 5. Let ½Cexp
n ðyrÞ�

be the ðm� nÞ real matrix whose columns are the n elastic modes of experimental sandwich panel r associated
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with the first experimental eigenfrequencies 0ooexp
1 ðyrÞp � � �poexp

n ðyrÞ and let ½Fn� be the ðm� nÞ real matrix

whose columns are the n first elastic modes calculated with the updated mean finite element model and

associated with eigenfrequencies 0oo1p � � �pon. Let ½ eMexp

n ðyrÞ�, ½ eDexp

n ðyrÞ� and ½ eKexp

n ðyrÞ� be the corresponding

experimental generalized mass, damping and stiffness matrices of experimental sandwich panel r directly

deduced from the experimental modal analysis and such that ½ eMexp

n ðyrÞ�aa0 ¼ mexpa ðyrÞdaa0 , ½ eDexp

n ðyrÞ�aa0 ¼

2xexpa ðyrÞmexpa ðyrÞoexp
a ðyrÞdaa0 and ½ eKexp

n ðyrÞ�aa0 ¼ mexpa ðyrÞ ðoexp
a ðyrÞÞ

2daa0 . Let ½Mn�, ½Dn� and ½Kn� be the random

matrices associated with the mean reduced matrix model of dimension n and defined in Section 6. Since the
experimental elastic modes differ from the elastic modes constructed with the updated mean finite element

model (due to uncertainties), matrices ½ eMexp

n ðyrÞ�, ½ eDexp

n ðyrÞ� and ½ eKexp

n ðyrÞ� are not represented in the same vector

subspace than ½Mn�, ½Dn� and ½Kn� (or equivalently than ½Mn�, ½Dn� and ½Kn�). However, it can be written that

½Cexp
n ðyrÞ�eqexpðyrÞ ¼ ½Fn� q

expðyrÞ, (12)

in which eqexpðyrÞ is the Cm-vector of the experimental generalized coordinates and where qexpðyrÞ is the
corresponding Cm-vector of the generalized coordinates in the mean-model basis. By construction, the matrix

½Cexp
n ðyrÞ�

T½Cexp
n ðyrÞ� 2MnðRÞ is invertible. Introducing the left pseudo-inverse ð½Cexp

n ðyrÞ�
T½Cexp

n ðyrÞ�Þ
�1

½Cexp
n ðyrÞ�

T 2Mn;mðRÞ of ½Cexp
n ðyrÞ� 2Mm;nðRÞ, Eq. (12) yieldseqexpðyrÞ ¼ ½S

exp
n ðyrÞ� q

expðyrÞ, (13)

in which the matrix ½Sexp
n ðyrÞ� 2MnðRÞ is written as

½Sexp
n ðyrÞ� ¼ ð½Cexp

n ðyrÞ�
T½Cexp

n ðyrÞ�Þ
�1
½Cexp

n ðyrÞ�
T½Fn�. (14)

The matrix transformation defined by Eqs. (13)–(14) allows the experimental matrices ½ eMexp

n ðyrÞ�, ½ eDexp

n ðyrÞ� and

½ eKexp

n ðyrÞ� to be transformed into the matrices ½Mexp
n ðyrÞ�, ½D

exp
n ðyrÞ� and ½K

exp
n ðyrÞ�, which are defined by

½Mexp
n ðyrÞ� ¼ ½S

exp
n ðyrÞ�

T½ eMexp

n ðyrÞ�½S
exp
n ðyrÞ� 2Mþn ðRÞ,

½Dexp
n ðyrÞ� ¼ ½S

exp
n ðyrÞ�

T½ eDexp

n ðyrÞ�½S
exp
n ðyrÞ� 2M

þ
n ðRÞ,

½Kexp
n ðyrÞ� ¼ ½S

exp
n ðyrÞ�

T½ eKexp

n ðyrÞ�½S
exp
n ðyrÞ� 2Mþn ðRÞ. ð15Þ

Let A be M, D or K. One can then introduce the matrix ½Gexp
An
ðyrÞ� 2Mþn ðRÞ such that ½Aexp

n ðyrÞ� ¼

½LAn
�T½G

exp
An
ðyrÞ�½LAn

� in which the invertible upper triangular matrix ½LAn
� 2MnðRÞ is such that

½An� ¼ ½LAn
�T½LAn

� 2Mþn ðRÞ. Therefore, matrix ½Gexp
An
ðyrÞ� is given by

½G
exp
An
ðyrÞ� ¼ ½LAn

��T½Aexp
n ðyrÞ�½LAn

��1 2Mþn ðRÞ. (16)

Consequently, the eight realizations f½Gexp
An
ðyrÞ�; r ¼ 1; . . . ; 8g of random matrix ½GAn � defined by Eq. (11) have

effectively been constructed. The dispersion parameter dA of random matrix ½An�, defined by Eq. (10) for
n ¼ n ¼ 5, has to be chosen independent of n and is then estimated by

dA ¼
1

8n

X8
r¼1

k½G
exp
An
ðyrÞ� � ½I n� k

2
F

( )1=2

. (17)

From Eq. (17), it can be deduced that dM ¼ 0:23, dD ¼ 0:43 and dK ¼ 0:25. Consequently, these values
represent the dispersion parameters for random matrices ½Mn�, ½Dn� and ½Kn�. These dispersion parameters are
taken as constants independent of dimension n.

Since the number of experimental panels is relatively small (8 panels are used), the quality of the estimation
of dA defined by Eq. (17) could be questionable. Nevertheless, as explain below, such an estimation is perfectly
correct. In Ref. [20], the convergence of the estimator bdA used to calculate the estimation dA defined by Eq.
(17) has been studied and one reuses this result. Applying this result for a dimension n ¼ 5 of the random
matrix ½Gexp

An
� and for 8 realizations, yields a standard deviation sd̂A

of the estimator bdA which is equal to 0.0146
for dM ¼ 0:23, to 0.0328 for dD ¼ 0:43 and to 0:0171 for dK ¼ 0:25. Consequently, although the number of
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realizations is relatively small (eight panels), the estimator is reasonably converged and then, the estimation
can be considered as correct. This unexpected and unusual result is due to the structure of the random matrix
½G

exp
An
�. As it can be seen in Eq. (11), for n ¼ n, this random matrix depends on n� ðnþ 1Þ=2 independent

random variables, i.e. on 15 independent random variables. Consequently, each realization of this random
matrix is spanned by the realizations of 15 independent random variables, and therefore, the estimation dA is
performed by using 8� 15 ¼ 120 realizations of independent random variables. In general, such an argument
is wrong, but in the present case, due to the structure of the random matrix ½Gexp

An
� and due to Eq. (10) defining

dA, this result holds and has been proved in studying the standard deviation sd̂A
of estimator bdA (see Ref. [20]).

8. Confidence region prediction for the FRF and experimental comparisons

8.1. Confidence region prediction with the non-parametric probabilistic model

We are interested in the construction of the confidence region associated with a probability level Pc ¼ 0:96
for the modulus of the random cross-FRFs between point N0 and points N1, N2 and N3. Let o 7!W ðoÞ ¼
j � o2Yn

kðoÞj in which k is the degree of freedom corresponding to the z-displacement at points N1;N2 and
N3, and where YnðoÞ is the random vector given by Eqs. (5) and (6). This confidence region is constructed by
using the sample quantiles [21]. For o fixed in B, let F W ðoÞ be the cumulative distribution function (continuous
from the right) of random variable W ðoÞ which is such that F W ðoÞðwÞ ¼ PðW ðoÞpwÞ. For 0opo1, the pth
quantile or fractile of FW ðoÞ is defined as

zðpÞ ¼ inffw : FW ðoÞðwÞXpg. (18)

Then, the upper envelope wþðoÞ and the lower envelope w�ðoÞ of the confidence region are defined by

wþðoÞ ¼ zðð1þ PcÞ=2Þ; w�ðoÞ ¼ zðð1� PcÞ=2Þ. (19)

The estimation of wþðoÞ and w�ðoÞ is performed as follows. Let w1ðoÞ ¼W ðo; y1Þ; . . . ; wns
ðoÞ ¼W ðo; yns

Þ be
the ns independent realizations of random variable W ðoÞ associated with the independent realizations
y1; . . . ; yns

. Let ew1ðoÞo � � �oewns
ðoÞ be the order statistics associated with w1ðoÞ; . . . ;wns

ðoÞ. Therefore, one
has the following estimation:

wþðoÞ ’ ewjþðoÞ; jþ ¼ fixðnsð1þ PcÞ=2Þ, (20)

w�ðoÞ ’ ewj�ðoÞ; j� ¼ fixðnsð1� PcÞ=2Þ (21)

in which fixðzÞ is the integer part of the real number z.
The confidence region of the random cross-FRFs are calculated by using Eqs. (5)–(11) and (20)–(21). Random

Eqs. (5) and (6) are solved by using the Monte Carlo numerical simulation with ns realizations. The realization
Qnðo; a‘Þ of the Cn-valued random variable QnðoÞ is the solution of the deterministic matrix equation

ð�o2½Mnða‘Þ� þ io½Dnða‘Þ� þ ½Knða‘Þ�ÞQ
nðo; a‘Þ ¼FnðoÞ; o 2 B (22)

in which ½Mnða‘Þ�, ½Dnða‘Þ� and ½Knða‘Þ� are the realizations of the random matrices ½Mn�, ½Dn� and ½Kn�,
respectively. The convergence of the random solution of Eq. (6) with respect to the number ns of realizations can
be analyzed in studying the mapping

ns 7!ConvðnsÞ ¼
1

ns

Xns

‘¼1

Z
B

kQnðo; a‘Þk2 do, (23)

in which Qnðo; a1Þ; . . . ;Q
nðo; ans

Þ are the ns realizations of the Cn-valued random variable QnðoÞ. Fig. 10
displays the graph of the function ns 7!ConvðnsÞ for n ¼ 200. The convergence is reached for ns ¼ 1200.

8.2. Prediction and experimental comparison

Figs. 11–13 display the confidence region prediction for the random cross-FRFs between point N0 and
points N1;N2 and N3, respectively, calculated with ns ¼ 2000 realizations and n ¼ 200. These figures show
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Fig. 10. Convergence of the random solution with respect to the number of realizations: Graph of function ns 7!ConvðnsÞ. Horizontal

axis: ns. Vertical axis: ConvðnsÞ.
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Fig. 11. Confidence region prediction for the random cross-FRF between point N0 and point N1. Horizontal axis: Frequency in Hertz.

Vertical axis: log10 of the modulus of the acceleration in m=s2. Experimental cross-FRF corresponding to the eight panels (eight thin solid

lines). Numerical cross-FRF calculated with the updated mean reduced matrix model (thick solid line). Mean value of the random cross-

FRF calculated with the non-parametric probabilistic model (thin dashed line). Confidence region of the random cross-FRF calculated

with the non-parametric probabilistic model (gray region).
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how the experimental cross-FRF corresponding to the eight panels are positioned with respect to this
confidence region. In addition, each figure displays the graph of the numerical cross-FRF calculated with the
updated mean reduced matrix model and the graph of the mean value of the random cross-FRF calculated
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Fig. 12. Confidence region prediction for the random cross-FRF between point N0 and point N2. Horizontal axis: Frequency in Hertz.

Vertical axis: log10 of the modulus of the acceleration in m=s2. Experimental cross-FRF corresponding to the eight panels (eight thin solid

lines). Numerical cross-FRF calculated with the updated mean reduced matrix model (thick solid line). Mean value of the random cross-

FRF calculated with the non-parametric probabilistic model (thin dashed line). Confidence region of the random cross-FRF calculated

with the non-parametric probabilistic model (gray region).
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Fig. 13. Confidence region prediction for the random cross-FRF between point N0 and point N3. Horizontal axis: Frequency in Hertz.

Vertical axis: log10 of the modulus of the acceleration in m=s2. Experimental cross-FRF corresponding to the eight panels (eight thin solid

lines). Numerical cross-FRF calculated with the updated mean reduced matrix model (thick solid line). Mean value of the random cross-

FRF calculated with the non-parametric probabilistic model (thin dashed line). Confidence region of the random cross-FRF calculated

with the non-parametric probabilistic model (gray region).
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with the non-parametric probabilistic model. It should be noted that the experimental responses belong almost
always to the predicted confidence region but sometimes, do not belong to the confidence region. In particular,
it is due to the fact that the predicted confidence region is calculated with a probability level 0.96 and not with
the level 1! Consequently, these figures show that the prediction compared with the experiments is good.

9. Conclusions

The methodology proposed to experimentally identify the non-parametric probabilistic approach which
allows model and data uncertainties to be taken into account in structural dynamics has been validated. The
experimental results obtained for a set of eight light sandwich panels show the sensitivity of the dynamical
response of the panels in the medium-frequency range. The use of the simplified usual laminated composite
thin plate theory, for constructing the predictive dynamical mean model, introduces significant model
uncertainties in the medium-frequency range. Since such dynamical systems are very sensitive to uncertainties
and taking into account the presence of data and model uncertainties in the mean mechanical model, the
introduction of a probabilistic model of model uncertainties is necessary to improve the predictability of the
mean model in the medium-frequency range. The confidence regions of the cross-frequency response functions
of the stochastic systems are then constructed and are compared to the experimental cross-frequency response
functions for the eight sandwich panels. The prediction compared with the experiments is good.
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